Содержание
устройство, принцип работы и классификация
Вокруг активно говорят про электокары, но двигатель внутреннего сгорания (ДВС) никуда не исчезает. Почему? О принципе работы и конструкции двигателей внутреннего сгорания, плюсах и минусах ДВС – в нашем материале.
Что такое ДВС?
ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.
ДВС работает благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.
Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).
Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).
Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.
- Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС.
Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
- Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют.
Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
- Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.
Устройство двигателя внутреннего сгорания
При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:
- Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью).
Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
- Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
- Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС).
Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.
Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).
Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.
Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.
- Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
- Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
- Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
- Выхлопная система. Служит для отвода от мотора продуктов сгорания.
Включает:
— выпускной коллектор (приёмник отработанных газов),
— газоотвод (приёмная труба, в народе- «штаны»),
— резонатор для разделения выхлопных газов и уменьшения их скорости,
— катализатор (очиститель) выхлопных газов,
— глушитель (корректирует направление потока газов, гасит шум). - Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
- Система впрыска. Позволяет организовать дозированную подачу топлива.
В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.
Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.
Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.
А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.
Принцип работы двигателя
Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.
При этом сам процесс преобразования энергии может отличаться.
Самый распространённый вариант такой:
- Поршень в цилиндре движется вниз.
- Открывается впускной клапан.
- В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
- Поршень поднимается.
- Выпускной клапан закрывается.
- Поршень сжимает воздух.
- Поршень доходит до верхней мертвой точки.
- Срабатывает свеча зажигания.
- Открывается выпускной клапан.
- Поршень начинает двигаться вверх.
- Выхлопные газы выдавливаются в выпускной коллектор.
Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.
При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.
Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.
Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.
Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):
- Такт выпуска.
- Такт сжатия воздуха.
- Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
- Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха
4 такта образуют рабочий цикл.
При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.
Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?
- Поршень двигается снизу-вверх.
- В камеру сгорания поступает топливо.
- Поршень сжимает топливно-воздушную смесь.
- Возникает компрессия. (давление).
- Возникает искра.
- Топливо загорается.
- Поршень продвигается вниз.
- Открывается доступ к выпускному коллектору.
- Из цилиндра выходят продукты сгорания.
То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.
Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.
Важно! Кроме количества тактов есть отличия в механизме газообмена.
В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.
У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).
Классификация двигателей
Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.
Классификация двигателей в зависимости от рабочего цикла
В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов:
- Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
- Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела.
Такой цикл лежит в основе работы дизельных двигателей.
Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.
А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.
И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.
Классификация двигателей в зависимости от конструкции
- Поршневой.
Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
- Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.
Классификация двигателей по принципу подачи воздуха
Подача воздуха также разделяет ДВС на два класса:
- Атмосферные.
При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
- Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.
Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.
Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.
Преимущества ДВС
- Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
- Высокая скорость заправки двигателя топливом.
- Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
- Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.
Недостатки ДВС
При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.
Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).
Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.
Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.
Двигатель внутреннего сгорания — что это такое, как работает и какие у него перспективы
Все тепловые машины внутреннего сгорания (ДВС) преобразуют какую-нибудь (в нашем случае — тепловую) энергию в работу. Двигатели бывают разные – электрические, гидравлические, тепловые и т.д., в зависимости от того, какой вид энергии они преобразуют в работу. ДВС — двигатель внутреннего сгорания, это тепловой двигатель, в котором в полезную работу преобразуется теплота сгорающего в рабочей камере топлива, внутри двигателя. Также существуют двигателя с внешним сгоранием — это реактивные двигатели самолётов, ракет и т.д. в этих двигателях сгорание внешнее, поэтому они называются двигателями с внешним сгоранием.
Но простой обыватель чаще сталкивается с двигателем автомобиля и понимают под двигателем именно поршневой двигатель внутреннего сгорания. В поршневом ДВС, сила давления газов, возникающая при сгорании топлива в рабочей камере, воздействует на поршень, который совершает возвратно-поступательное движение в цилиндре двигателя и передаёт усилие на кривошипно-шатунный механизм, который преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Но это очень упрощенный взгляд на ДВС. На самом деле, в ДВС сосредоточены сложнейшие физические явления, пониманию которых посвятили себя многие выдающиеся ученые. Чтобы ДВС работал, в его цилиндрах, сменяя друг друга, происходят такие процессы, как подача воздуха, впрыск и распыление топлива, его смешивание с воздухом, воспламенение образовавшейся смеси, распространение пламени, удаление отработавших газов. На каждый процесс отводится несколько тысячных долей секунды. Добавьте к этому процессы, которые протекают в системах ДВС: теплообмен, течение газов и жидкостей, трение и износ, химические процессы нейтрализации отработавших газов, механические и тепловые нагрузки. Это далеко не полный перечень. И каждый из процессов должен быть организован наилучшим образом. Ведь из качества протекающих в ДВС процессов складывается качество двигателя в целом — его мощность, экономичность, шумность, токсичность, надежность, стоимость, вес и размеры.
Двигателя внутреннего сгорания бывают разные: 2-х танктные, 4-х тактные, дизельные, бензиновые, со смешенным питанием, карбюраторные, инжекторные и т. д. и это далеко не полный список! Как видите, вариантов двигателей внутреннего сгорания очень много, но если стоит затронуть классификацию ДВС, то для подробного рассмотрения всего объёма материала понадобится минимум 20-30 страниц — большой объём, не так ли? И это только классификация…
Принципиальный ДВС автомобиля НИВА
1 — Щуп для замера уровня масла в картере
|
|
---|
Ни одна область деятельности несравнима с поршневыми ДВС по масштабам, количеству людей занятых в разработке, производстве и эксплуатации. В развитых странах деятельность четверти самодеятельного населения прямо или косвенно связана с поршневым двигателестроением. Двигателестроение, как исключительно наукоемкая область, определяет и стимулирует развитие науки и образования. Общая мощность поршневых двигателей внутреннего сгорания составляет 80 — 85% мощности всех энергоустановок мировой энергетики. На автомобильном, железнодорожном, водном транспорте, в сельском хозяйстве, строительстве, средствах малой механизации, ряде других областей, поршневой ДВС как источник энергии пока не имеет должной альтернативы. Мировое производство только автомобильных двигателей непрерывно увеличивается, превысив 60 миллионов единиц в год. Количество производимых в мире малоразмерных двигателей также превышает десятки миллионов в год. Даже в авиации поршневые двигатели доминируют по суммарной мощности, количеству моделей и модификаций и количеству установленных на самолеты двигателей. В мире эксплуатируется несколько сотен тысяч самолетов с поршневыми ДВС (бизнес-класса, спортивных, беспилотных и т.
д.). В США на долю поршневых двигателей приходится около 70% мощности всех двигателей, установленных на гражданских летательных аппаратах.
Ознакомьтесь с работами по тепловому и динамическому расчету ДВС
Но со временем всё меняется и скоро мы увидим и будем эксплуатировать принципиально другие типы двигателей, которые будет иметь высокие эксплуатационные показатели, высокий КПД, простота конструкции и главное — экологичность. Да, всё верно, главным минусом двигателя внутреннего сгорания является его экологическая характеристика. Как бы не оттачивали работу ДВС, какие бы системы не внедряли, он всё равно оказывается существенное влияние на наше здоровье. Да, теперь можно с уверенностью сказать, что существующая технология моторостроения чувствует «потолок» — это такое состояние, когда та, или иная технология полностью исчерпала свои возможность, полностью выжато, всё что можно было сделать — уже сделано и с точки зрения экологии принципиально НИЧЕГО уже не изменить в существующих типах ДВС. Стоит вопрос: нужно полностью менять принцип работы двигателя, его энергоноситель (нефтяные продукты) на что-то новое, принципиально иное (водород, электричество, энергия атома, гравитацию, инерцию и т.д.). Но, к сожалению, это дело не одного дня или даже года, нужны десятилетия…
Пока ещё не одно поколение ученых и конструкторов будут исследовать и совершенствовать старую технологию постепенно подходя всё ближе и ближе к стенке, через которую уже будет невозможно перескочить. Еще очень долго ДВС будет давать работу тем, кто его производит, эксплуатирует, обслуживает и продает. Почему? Всё очень просто, но в то же время эту простую истину далеко не все понимают и принимают. Главная причина замедления внедрения принципиально иных технологий — капитализм. Да, как бы это странно не звучало, но именно капитализм, та система, которая как кажется должна быть заинтересована в новых технологиях, тормозит развитие человечества. Всё очень просто — нужно зарабатывать больше, а вкладывать меньше. Как же быть с теми нефтяными вышками, нефтезаводами и доходами? Никак. К сожалению, все измерятеся деньгами.
ДВС «хоронили» неоднократно. В разное время на смену ему приходили электродвигатели на аккумуляторах, топливные элементы на водороде и многое другое. ДВС неизменно побеждал в конкурентной борьбе. И даже проблема исчерпания запасов нефти и газа – это не проблема ДВС. Существует неограниченный источник топлива для ДВС. По последним данным, нефть может восстанавливаться, а что это значит для нас ?
При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.
Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рисунок слева), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.
Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.
Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.
Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.
Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике. Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.
Пунктирной линией на графике выше показаны более оптимальные характеристики двигателя.
Статьи по теме:
1. Краткий обзор основных видов конструкций и тенденций развития бензиновых двигателей;
2. Альтернативное топливо — топливо будущено и настоящего.
Тепловой двигатель — Энергетическое образование
Энергетическое образование
Меню навигации
ИСТОЧНИКИ ЭНЕРГИИ
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ
ИНДЕКС
Поиск
4-тактный двигатель внутреннего сгорания. Рисунок 1. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп [1]
Тепловой двигатель — это тип двигателя (как двигатель в автомобиле) который производит макроскопическое движение от тепла. Когда люди потирают руки, трение превращает механическую энергию (движение наших рук) в тепловую энергию (руки нагреваются). Тепловые двигатели делают прямо противоположное; они берут энергию тепла (по сравнению с окружающей средой) и превращают ее в движение. Часто это движение превращается в электричество с помощью генератора.
Почти вся энергия, используемая для транспорта и электричества, поступает от тепловых двигателей. Горячие объекты, даже газы, обладают тепловой энергией, которую можно превратить во что-то полезное. Тепловые двигатели перемещают энергию из горячего места в холодное и переводят часть этой энергии в механическую энергию. Для работы тепловых двигателей требуется разница температур.
Изучение термодинамики изначально было вдохновлено попыткой получить как можно больше энергии от тепловых двигателей. [2] По сей день используются различные виды топлива, такие как бензин, уголь и уран. Все эти тепловые двигатели все еще работают в пределах, налагаемых вторым законом термодинамики. Это означает, что для нагревания газа используются различные виды топлива, а для избавления от отработанного тепла необходим большой холодный резервуар. Часто отработанное тепло уходит в атмосферу или в большой водоем (океан, озеро или река).
В зависимости от типа двигателя используются различные процессы, такие как воспламенение топлива при сгорании (бензин и уголь) или использование энергии ядерных процессов для производства тепла (уран), но конечная цель одна и та же: превратить тепло в работу. Наиболее известным примером тепловой машины является двигатель автомобиля, но большинство электростанций, таких как угольные, газовые и атомные, также являются тепловыми двигателями.
Двигатель внутреннего сгорания
- полный артикул
Двигатели внутреннего сгорания являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и поездах. Они названы так потому, что топливо воспламеняется, чтобы совершать работу внутри двигателя. Та же топливно-воздушная смесь выбрасывается в виде выхлопных газов. Хотя это чаще всего делается с помощью поршня, это также можно сделать с помощью турбины.
На рис. 1 показан пример двигателя внутреннего сгорания. Этот конкретный тип называется четырехтактным двигателем, который довольно распространен в автомобилях.
Внешняя тепловая машина
- полная статья
Внешние тепловые машины обычно представляют собой паровые машины, и они отличаются от внутренних тем, что источник тепла отделен от работающего газа. Эти тепловые двигатели обычно называют двигателями внешнего сгорания, потому что сгорание происходит вне двигателя. Например, внешнее горение будет использовать пламя для нагрева воды в пар, а затем использовать пар для вращения турбины. Это отличается от внутреннего сгорания, как в двигателе автомобиля, где бензин воспламеняется внутри поршня, работает, а затем выбрасывается.
В ядерных реакторах нет сгорания, поэтому используется более широкий термин «внешний тепловой двигатель». Реактор с кипящей водой на рис. 2 представляет собой внешнюю тепловую машину, как и другие атомные электростанции.
Рис. 2. Ядерный реактор с кипящей водой, представляющий собой внешнюю тепловую машину. [3]
Примеры тепловых двигателей
Внутреннее сгорание
- Поршневой двигатель
- Газовая турбина
- Реактивный двигатель
Внешнее сгорание
- ядерные реакторы, такие как реактор CANDU, реактор с водой под давлением
- угольная электростанция
- электростанция, работающая на природном газе
КПД
- основной артикул
КПД двигателя – это процент подводимой энергии, которую двигатель может преобразовать в полезную работу. Уравнение для этого: η = выходная мощность / входная энергия. Наиболее эффективные поршневые двигатели работают с КПД около 50%, а средняя угольная электростанция работает с КПД около 33%. Электростанции, построенные совсем недавно, имеют КПД более 40%.
Меньшие тепловые двигатели, например, в автомобилях, имеют выходную механическую мощность, измеряемую в лошадиных силах. Более крупные тепловые двигатели, такие как электростанции, измеряют мощность в МВт. Конечно, выходная мощность может быть измерена в любых единицах мощности, например, в ваттах.
Потребление тепловой машины также является мощностью, часто измеряемой в МВт. С силовой установкой есть и электрическая выходная мощность. Чтобы различать эти две мощности, тепловая мощность (входная мощность) измеряется в тепловых мегаваттах (МВт), а для производства электроэнергии выходная мощность измеряется в электрических мегаваттах (МВт). Для тепловых двигателей, которые обеспечивают движение вместо электричества, выходная мощность будет механической.
Когенерация
- основная статья
Тепловая машина имеет два побочных продукта: работу и тепло. Назначение большинства двигателей — производить работу, а тепло обрабатывается просто как отходы. Когенерация использует отработанное тепло для полезных вещей. Отопитель в автомобиле работает по принципу когенерации, отбирая отработанное тепло двигателя для нагрева воздуха, который прогревает салон. Вот почему работа отопителя автомобиля зимой мало влияет на расход бензина, а работа кондиционера летом может обойтись примерно в 10-20% от расхода бензина автомобиля.
Для дальнейшего чтения
- Роторный двигатель
- Поршневой двигатель
- Работа
- Первый закон термодинамики
- Или просмотрите случайную страницу
Ссылки
- ↑ «File:4StrokeEngine Ortho 3D Small.gif — Wikimedia Commons», Commons.wikimedia.org, 2018. [Онлайн]. Доступно: https://commons.wikimedia.org/wiki/File%3A4StrokeEngine_Ortho_3D_Small.gif. [Доступ: 17 мая 2018 г.].
- ↑ «Энергия тонкой концепции» Дж. Куперсмит, глава 12, стр.
208, Oxford University Press, 2010.
- ↑ (2015, 4 января). Реактор с кипящей водой [Онлайн]. Доступно: http://www.nrc.gov/reading-rm/basic-ref/students/animated-bwr.html
Как работают тепловые двигатели?
Как работают тепловые двигатели? — Объясните этот материал
Вы здесь:
Домашняя страница >
Инжиниринг >
Двигатели
- Дом
- Индекс А-Я
- Случайная статья
- Хронология
- Учебное пособие
- О нас
- Конфиденциальность и файлы cookie
Реклама
Криса Вудфорда. Последнее обновление: 16 марта 2022 г.
В наш век топливных элементов и
электромобили, паровозы (и
даже автомобили с бензиновым двигателем) может показаться ужасно старой технологией.
Но взгляните на историю шире, и вы увидите, что даже древнейшие
паровой двигатель действительно очень современное изобретение. Люди были
используя инструменты, чтобы увеличить свою мышечную силу примерно в 2,5 раза
миллионов лет, но только за последние 300 лет мы усовершенствовали
искусство создания «мускулов» — машин с двигателем, — которые работают
все сами по себе. Скажем иначе: люди были без
двигатели более 99,9 процента нашего существования на Земле!
Теперь у нас есть двигатели, без которых, конечно, не обойтись
их. Кто мог представить себе жизнь без автомобилей, грузовиков, кораблей или
самолеты — все они приводились в движение мощными двигателями. И двигателей нет
просто перемещают нас по миру, они помогают нам радикально изменить его.
От мостов и туннелей до небоскребов
и плотины, практически каждое крупное здание и сооружение, построенное людьми.
в последние пару столетий был построен с помощью
двигателей — кранов, экскаваторов, самосвалов и бульдозеров.
их. Двигатели также подпитывают современную сельскохозяйственную революцию: значительная часть всех наших
еда теперь собирается или транспортируется с использованием мощности двигателя. Двигатели не заставляют мир двигаться
круглые, но они участвуют практически во всем остальном, что происходит
на нашей планете. Рассмотрим подробнее, что они из себя представляют и как
Работа!
Работа: Основная концепция тепловой машины: машина, которая преобразует тепловую энергию в работу, перемещаясь между высокой температурой и более низкой. Типичный тепловой двигатель питается от сжигания топлива (внизу слева) и использует расширяющийся-сжимающийся поршень (вверху в центре) для передачи энергии топлива на вращающееся колесо (внизу справа).
Содержание
- Что такое тепловая машина?
- Как двигатель приводит машину в движение?
- Типы двигателей
- Двигатели внешнего сгорания
- Двигатели внутреннего сгорания
- Двигатели в теории
- Цикл Карно
- Насколько эффективен двигатель?
- Каков максимальный КПД двигателя?
- Узнать больше
Что такое тепловая машина?
Двигатель — это машина, которая вращает
энергия, заключенная в топливе, превращается в силу и движение. Уголь — нет
очевидное использование
кто-нибудь: это грязный, старый, каменный материал, зарытый под землю. Сожги это в
однако двигатель, и вы можете высвободить содержащуюся в нем энергию для
заводские машины, автомобили, лодки или локомотивы. То же самое справедливо
других видов топлива, таких как природный газ, бензин, древесина и торф. С
двигатели работают, сжигая топливо для выделения тепла, иногда они
позвонил тепловые двигатели . Процесс сжигания топлива включает
химическая реакция, называемая горение , когда топливо сгорает в
кислород в воздухе, чтобы сделать углекислый газ и пар. (Как правило, двигатели также загрязняют воздух, потому что топливо не всегда на 100% чистое и не сгорает идеально чисто.)
“ Всем известно, что тепло может производить движение.
В том, что он обладает огромной движущей силой, никто не может сомневаться… ”Николя Сади Карно, 1824 г.
Существует два основных типа тепловых двигателей: внешнего сгорания и внутреннего сгорания.
сгорания:
- В двигателе внешнего сгорания топливо сгорает снаружи
и вдали от основной части двигателя, где сила и движение
производятся. Хорошим примером является паровая машина: есть угольный огонь
на одном конце, который нагревает воду, чтобы сделать пар. Пар подается в прочный металлический цилиндр , где он перемещает
плотно прилегающий плунжер, называемый поршнем туда и обратно.
движущийся поршень приводит в действие все, к чему прикреплен двигатель (возможно,
заводской станок или колеса паровоза). Это внешний
двигатель внутреннего сгорания, потому что уголь горит снаружи и некоторые
расстояние от цилиндра и поршня. - В двигателе внутреннего сгорания топливо сгорает внутри
цилиндр. В типичном автомобильном двигателе, например, есть
что-то вроде четырех-шести отдельных цилиндров, внутри которых бензин
постоянно горит кислородом с выделением тепловой энергии.
цилиндры «зажигаются» поочередно, чтобы гарантировать, что двигатель производит
стабильная подача мощности, которая приводит в движение колеса автомобиля.
Двигатели внутреннего сгорания, как правило, гораздо более эффективны, чем двигатели с внешним
двигатели внутреннего сгорания, потому что энергия не тратится впустую на передачу тепла от
огонь и котел к цилиндру; все происходит в одном месте.
Художественное произведение: В двигателе внешнего сгорания (например, паровом двигателе) топливо сгорает вне цилиндра, и тепло (обычно в виде горячего пара) должно отводиться на некоторое расстояние. В двигателе внутреннего сгорания (например, в автомобильном) топливо сгорает прямо внутри цилиндров, что гораздо эффективнее.
Фото: Паровой двигатель является двигателем внешнего сгорания, потому что уголь горит в топке (там, где стоит машинист) на некотором расстоянии от цилиндра, где вырабатывается фактическая мощность.
Как двигатель приводит машину в движение?
В двигателях используются поршни и цилиндры, поэтому мощность, которую они производят,
непрерывный возвратно-поступательный, толкающий и тянущий или возвратно-поступательный
движение. Проблема в том, что многие машины (и практически все транспортные средства) полагаются на
на колесах, которые вращаются и вращаются, другими словами, вращательный
движение. Существуют различные способы поворота возвратно-поступательного движения.
движение во вращательное (или наоборот). Если вы когда-нибудь смотрели
пыхтя паровой машины, вы, должно быть, заметили, как крутятся колеса.
приводимый в движение кривошипом и шатуном: простой
рычажно-рычажный механизм, соединяющий одну сторону колеса с поршнем, так что
колесо вращается, когда поршень качает вперед и назад.
Альтернативный способ преобразования возвратно-поступательного движения во вращательное
заключается в использовании передач. Это то, что гениальный шотландский инженер
Джеймс Уатт (1736–1819 гг.)) решил сделать в 1781 году, когда открыл кривошипно-шатунный механизм, который он
Необходимость использовать в своей усовершенствованной конструкции паровой двигатель была, по сути,
уже защищен патентом. Конструкция Уатта известна как
солнечная и планетарная шестерни ) и состоит из двух или более шестерен
колеса, одно из которых (планета) толкается вверх и вниз поршнем
стержень, движущийся вокруг другой шестерни (Солнца) и приводящий ее во вращение.
Фото: Два способа преобразования возвратно-поступательного движения во вращательное: Первое фото: Солнечная и планетарная передача. Когда поршень движется вверх и вниз, шестерни крутятся. Второе фото: На этом токарном станке с ножным приводом просто решена проблема преобразования движения вверх-вниз в круговое. Когда вы нажимаете вверх и вниз на педаль (педаль), вы заставляете струну подниматься и опускаться. Это заставляет вал, к которому прикреплена струна, вращаться со скоростью, приводя в действие токарный станок и сверло или другой инструмент, прикрепленный к нему. Обе фотографии сделаны в Музее науки Think Tank в Бирмингеме, Англия.
Некоторым двигателям и машинам необходимо преобразовать вращательное движение в
возвратно-поступательное движение. Для этого вам нужно что-то, что работает в
противоположное коленчатому валу, а именно кулачок. Кулачок — это
некруглое (обычно яйцевидное) колесо, имеющее что-то вроде
бар, опирающийся на него. Когда ось поворачивает колесо, колесо
заставляет штангу подниматься и опускаться. Не можете представить это? Попробуйте представить автомобиль, колеса которого
яйцевидный. По мере движения колеса (кулачки) вращаются, как обычно, но кузов автомобиля подпрыгивает вверх и
вниз одновременно, поэтому вращательное движение производит
возвратно-поступательные движения (подпрыгивания) у пассажиров!
Кулачки работают во всех видах машин. Есть камера в
электрическая зубная щетка, которая делает
щетка двигается вперед и назад, когда электрический двигатель внутри вращается.
Рекламные ссылки
Типы двигателей
Фото: Внешнее сгорание: Эта стационарная паровая машина использовалась для подачи природного газа в дома людей с 1864 года. Фотография сделана в Think Tank.
Существует полдюжины или около того основных типов двигателей, которые вырабатывают мощность за счет сжигания топлива:
Двигатели внешнего сгорания
Лучевые двигатели (атмосферные двигатели)
Первые паровые двигатели были гигантскими машинами, заполнявшими целые здания
и они обычно использовались для откачки воды из затопленных шахт. Создан англичанином Томасом Ньюкоменом.
(1663/4–1729) в начале 18 века имели одноцилиндровый
и поршень, прикрепленный к большой балке, которая качалась вперед и назад.
Тяжелая балка обычно была наклонена вниз, так что поршень находился высоко в цилиндре.
В цилиндр закачивали пар, затем впрыскивали воду, охлаждая
пар, создавая частичный вакуум и заставляя луч наклоняться назад
другой путь, прежде чем процесс был повторен. Лучевые двигатели были важным технологическим достижением,
но они были слишком большими, медленными и неэффективными, чтобы приводить в действие заводские машины и поезда.
Работа: Как работает атмосферный (лучевой) двигатель (упрощенно). Двигатель состоит из тяжелой балки (серая), установленной на башне (черная), которая может качаться вверх и вниз. Обычно балка наклоняется вниз и вправо под весом прикрепленного к ней насосного оборудования. Водогрейный котел (1) подает пар (2) вверх в цилиндр (3). Когда цилиндр заполнен, из резервуара (4) впрыскивается холодная вода. Это конденсирует пар, создавая более низкое давление в цилиндре. Поскольку атмосферное давление (воздуха) над поршнем выше, чем давление под ним, поршень толкается вниз, вся балка наклоняется влево, а насос тянет вверх, выкачивая воду из шахты (5).
Паровые двигатели
В 1760-х годах Джеймс Уатт значительно усовершенствовал паровой двигатель Ньюкомена, сделав его
меньше, эффективнее и мощнее — и эффективно превращает пар
двигателей в более практичные и доступные машины. Работа Уатта привела к созданию стационарного пара
двигатели, которые можно было бы использовать на заводах, и компактные движущиеся двигатели
которые могли бы привести в действие паровозы. Подробнее читайте в нашей статье о паровых двигателях.
Двигатели Стирлинга
Не все двигатели внешнего сгорания большие и неэффективные.
Шотландский священник Роберт Стирлинг (179 г.0–1878) изобрел очень умный
двигатель с двумя цилиндрами с поршнями, приводящими в действие два кривошипа
езда на одном колесе. Один цилиндр постоянно поддерживается горячим (нагревается внешней энергией).
источником, который может быть чем угодно, от угольного пожара до геотермальной энергии.
подачи), в то время как другой остается постоянно холодным. Двигатель работает по
челночный тот же объем газа (постоянно запечатанный внутри
двигатель) туда и обратно между цилиндрами через устройство, называемое
регенератор , который помогает сохранять энергию и значительно увеличивает
экономичность двигателя. Двигатели Стирлинга не обязательно включают сгорание,
хотя они всегда питаются от внешнего источника тепла. Узнайте больше в нашей основной статье о двигателях Стирлинга.
Фото: Машинный зал Think Tank (музей науки в Бирмингеме, Англия) представляет собой удивительную коллекцию энергетических машин 18 века. Экспонаты включают огромный паровой двигатель Smethwick, самый старый работающий двигатель в мире. На этом снимке он не показан, в основном потому, что он был слишком большим, чтобы его можно было сфотографировать!
Двигатели внутреннего сгорания
Бензиновые (бензиновые) двигатели
В середине 19 века несколько европейских инженеров, в том числе
Француз Жозеф Этьен Ленуар (1822–1819 гг. ).00) и Герман Николаус Отто
(1832–1891) усовершенствовали двигатели внутреннего сгорания, которые сжигали
бензин. Это был короткий шаг для Карла Бенца (1844–1929).
подключить один из этих двигателей к трехколесному
карету и сделать первый в мире автомобиль, работающий на газе. Читать далее
в нашей статье об автомобильных двигателях.
Фото: Мощный бензиновый двигатель внутреннего сгорания от спортивного автомобиля Jaguar.
Дизельные двигатели
Позже, в 19 веке, другой немецкий инженер, Рудольф Дизель
(1858–1919 гг.)13), понял, что может сделать гораздо более мощное внутреннее
двигатель внутреннего сгорания, который мог работать на всех видах топлива.
В отличие от бензиновых двигателей, дизельные двигатели сжимают топливо намного сильнее.
он самопроизвольно воспламеняется и выделяет тепловую энергию
заперта внутри него. Сегодня дизельные двигатели по-прежнему являются предпочтительными машинами для вождения.
тяжелые транспортные средства, такие как грузовики, корабли и строительные машины, а также многие автомобили.
Подробнее читайте в нашей статье о дизельных двигателях.
Роторные двигатели
Одним из недостатков двигателей внутреннего сгорания является то, что они
нужны цилиндры, поршни и вращающийся коленчатый вал, чтобы использовать их
мощность: цилиндры неподвижны, а поршни и коленчатый вал
постоянно перемещаются. Роторный двигатель — это принципиально другая конструкция
двигателя внутреннего сгорания, в котором
«цилиндры» (которые не всегда цилиндрические
форме) вращаются вокруг неподвижного коленчатого вала.
Хотя роторные двигатели относятся к 19 веку, возможно,
самый известный дизайн — относительно современный Роторный двигатель Ванкеля ,
особенно используется в некоторых японских автомобилях Mazda. Статья в Википедии о
Роторный двигатель Ванкеля
хорошее введение с блестящей маленькой анимацией.
Двигатели в теории
Фото: Машинист: гениальный Николя Сади Карно, 17 лет.
Пионерами двигателей были инженеры, а не ученые.
Ньюкомен и Уатт были практическими, практическими «деятелями», а не головоломными теоретиками.
Так продолжалось до тех пор, пока француз Николя Сади Карно (1796–1832) появился в 1824 году — более чем через столетие после того, как Ньюкомен построил свой первый паровой двигатель, — что были предприняты какие-либо попытки понять теорию
того, как работают двигатели и как их можно улучшить с истинно научной точки зрения.
Карно интересовался тем, как сделать двигатели более эффективными (в
Другими словами, как больше энергии можно получить из того же количества топлива).
Вместо того, чтобы возиться с настоящим паровым двигателем и пытаться его улучшить
Методом проб и ошибок (подобный подход применил Уатт к двигателю Ньюкомена) он сделал себя
теоретический движок — на бумаге — и вместо этого поиграл с математикой.
Фото: Паровые двигатели по своей природе неэффективны.
Работа Карно говорит нам, что для максимальной эффективности пар в двигателе
как это нужно перегреть (так что это выше его
обычная температура кипения 100 ° C), а затем ему дают возможность максимально расшириться и остыть в цилиндрах, чтобы он отдавал как можно больше энергии поршням.
Цикл Карно
Тепловая машина Карно представляет собой довольно простую математическую модель
того, как в теории мог бы работать наилучший поршневой и цилиндровый двигатель,
бесконечно повторяя четыре шага, которые теперь называются Цикл Карно .
Мы не будем вдаваться здесь в детальную теорию или математику (если вам интересно, см.
Страница цикла НАСА Карно
и превосходная страница «Тепловые двигатели: цикл Карно» Майкла Фаулера с превосходной флэш-анимацией).
Базовый двигатель Карно состоит из газа, заключенного в цилиндр с поршнем. Газ получает энергию от источника тепла,
расширяется, охлаждается и выталкивает поршень. Когда поршень возвращается в цилиндр, он сжимает и нагревает газ, так что газ завершает цикл при точно таком же давлении, объеме и температуре, с которых он начал. Двигатель Карно не теряет энергию на трение или окружающую среду. Это полностью обратимо — теоретически совершенная и совершенно теоретическая модель работы двигателей. Но это многое говорит нам и о реальных двигателях.
Насколько эффективен двигатель?
“ Мы не должны рассчитывать когда-либо использовать на практике всю движущую силу горючих веществ. ”
Николя Сади Карно, 1824
Стоит отметить вывод, к которому пришел Карно: КПД двигателя
(реальная или теоретическая) зависит от максимальной и минимальной температур, в пределах которых он работает .
С математической точки зрения, КПД двигателя Карно, работающего в диапазоне от Tmax (его максимальная температура) до
Tmin (его минимальная температура):
(Tmax-Tmin) / Tmax
, где обе температуры измеряются в кельвинах (K).
Повышение температуры жидкости внутри цилиндра в начале цикла делает его более эффективным; снижение температуры на противоположном конце цикла также делает его более эффективным. Другими словами, действительно эффективная тепловая машина работает при максимально возможной разнице температур.
Другими словами, мы хотим, чтобы Tmax была как можно выше, а Tmin как можно ниже.
Вот почему такие вещи, как паровые турбины на электростанциях, должны использовать градирни для максимально возможного охлаждения своего пара: именно так они могут получать больше энергии из пара и производить больше электроэнергии. В реальном мире движущиеся транспортные средства, такие как автомобили и самолеты, очевидно, не могут иметь ничего похожего на градирни, и трудно достичь низких температур Tmin, поэтому вместо этого мы обычно сосредотачиваемся на повышении Tmax.
Настоящие двигатели — в автомобилях, грузовиках, реактивных самолетах и космических ракетах — работают
при чрезвычайно высоких температурах (поэтому они должны быть построены из высокотемпературных
материалов, таких как сплавы и керамика).
Каков максимальный КПД двигателя?
Есть ли предел эффективности тепловой машины? Да! Tmin никогда не может быть меньше нуля (при абсолютном нуле), поэтому, согласно
Согласно нашему уравнению, приведенному выше, ни один двигатель не может быть более эффективным, чем Tmax/Tmax = 1, что соответствует 100-процентному КПД, и большинство
настоящие двигатели и близко к этому не подходят. Если бы у вас была паровая машина, работающая при температуре от 50°C до 100°C,
это было бы около 13 процентов эффективности. Чтобы получить 100-процентную эффективность, вам нужно охладить пар.
до абсолютного нуля (-273°C или 0K), что, очевидно, невозможно. Даже если бы вы могли охладить его до замерзания
(0 ° C или 273 K), вы все равно получите только 27-процентную эффективность.
Таблица: Тепловые двигатели более эффективны, когда они работают при больших перепадах температур. Предполагая постоянную минимальную температуру льда (0 ° C или 273 K), эффективность медленно растет по мере повышения максимальной температуры. Но обратите внимание, что мы получаем убывающую отдачу: с каждым повышением температуры на 50 ° C эффективность растет с каждым разом меньше. Другими словами, мы никогда не сможем достичь 100-процентной эффективности, просто повысив максимальную температуру.
Это также помогает нам понять, почему более поздние паровые двигатели (созданные такими инженерами, как Ричард Тревитик
и Оливер Эванс) использовали намного более высокие давление пара , чем у таких людей, как Томас Ньюкомен.
Двигатели более высокого давления были меньше, легче и их было проще устанавливать на движущихся транспортных средствах, но они также были намного эффективнее:
при более высоких давлениях вода закипает при более высоких температурах, и это дает нам большую эффективность.
При удвоенном атмосферном давлении вода кипит при температуре около 120°C (393K), что дает КПД 30%.
с минимальной температурой 0°С; при четырехкратном атмосферном давлении температура кипения составляет 143°C (417K), а эффективность близка к 35%. Это большое улучшение, но все еще далеко от 100 процентов. Паровые турбины на электростанциях используют очень высокое давление (более чем в 200 раз превышающее атмосферное давление).
является типичным). При 200 атмосферах вода кипит при температуре около 365°C (~640K), что дает максимальный теоретический КПД около 56 процентов, если мы также сможем охладить воду до точки замерзания (и если нет других потерь тепла или неэффективности).
Даже в этих экстремальных и идеальных условиях мы все еще очень далеки от 100-процентной эффективности;
реальные турбины с большей вероятностью достигают 35–45 процентов.
Создание эффективных тепловых двигателей намного сложнее, чем кажется!
Узнайте больше
На этом сайте
- Дизельные двигатели
- Энергия
- Бензиновые двигатели
- Нагрев
- Реактивные двигатели
- Паровые двигатели
- Двигатели Стирлинга
На других сайтах
Один из лучших способов понять двигатели — посмотреть их анимацию в работе.
Вот два очень хороших сайта, которые исследуют самые разные движки:
- Анимированные движки: Этот отличный сайт охватывает практически все виды движков, которые вы можете себе представить, с простой для понимания анимацией и очень четкими письменными описаниями.
- Посмотрите, как работают двигатели: коллекция очень красиво нарисованных анимаций реальных двигателей из Лондонского музея науки. (Архивировано через Wayback Machine.)
Книги
Введение
- Шесть легких пьес Ричарда П.
Фейнмана. Penguin, 1998. Глава 4 представляет собой очень оригинальное объяснение сохранения энергии, включая довольно простое объяснение того, почему ни один двигатель или машина не является более эффективным, чем полностью обратимый (идеальный).
Более сложный
- Цикл Карно и тепловой двигатель. Основы и приложения Мишеля Фейдта (ред.). MDPI AG, 2020. Сборник коротких статей об эффективности тепловых двигателей и смежных темах.
- Механический КПД тепловых двигателей, Джеймс Р. Сенфт. Издательство Кембриджского университета, 2007. Исследует и сравнивает термодинамические циклы в различных тепловых двигателях.
- «Размышления о движущей силе тепла», Н. Сади Карно, Нью-Йорк, Wiley, 189.7. Прочитайте идеи Карно его собственными словами.
Детские книги
- «Паровой двигатель — прорыв в энергетике» Ричарда Теймса. Heinemann, 1999. В этом 32-страничном введении (для детей 9–12 лет) рассматривается влияние паровых двигателей на общество.
Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты.
Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.
Авторские права на текст © Chris Woodford 2009, 2019. Все права защищены. Полное уведомление об авторских правах и условия использования.
Подпишитесь на нас
Оцените эту страницу
Пожалуйста, оцените эту страницу или оставьте отзыв, и я сделаю пожертвование WaterAid.
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:
Цитировать эту страницу
Вудфорд, Крис.